Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors
نویسندگان
چکیده
The development of new organic semiconductors with improved performance in organic thin film transistors (OTFTs) is a major challenge for materials chemists. There is a particular need to develop air-stable n-channel (electron-conducting) organic semiconductors with performance comparable to that of p-channel (hole-conducting) materials, for organic electronics to realize the benefits of complementary circuit design, i.e., the ability to switch transistors with either positive or negative gate voltages. There have been significant advancements in the past five years. In terms of standard OTFT metrics such as the field effect mobility (μFET) and on-to-off current ratio (ION/IOFF), n-channel OTFTs have achieved performance comparable both to that of n-channel amorphous silicon TFTs and to that of the best reported p-channel (hole-conducting) OTFTs; however, issues of device stability linger. This review provides a detailed introduction to OTFTs, summarizes recent progress in the development of new n-channel organic semiconductors, and discusses the critical properties that any prospective n-channel material must have. Methods important to semiconductor design such as electronic structure calculations and synthetic structural modifications are highlighted in a case study of the development of a new n-channel material based on a terthiophene modified with electron-withdrawing groups. The review concludes with a discussion of directions for future work in this area.
منابع مشابه
Organic Thin Film Transistors with Polyvinylpyrrolidone / Nickel Oxide Sol-Gel Derived Nanocomposite Insulator
Polyvinylpyrrolidone / Nickel oxide (PVP/NiO) dielectrics were fabricated with sol-gel method using 0.2 g of PVP at different working temperatures of 80, 150 and 200 ºC. Structural properties and surface morphology of the hybrid films were investigated by X- Ray diffraction (XRD) and Scanning Electron Microscope (SEM) respectively. Energy dispersive X-ray spec...
متن کاملLow Power Complementary Organic Comparators
In this work, we present a novel organic complementary comparator constructed of Pentacene P-channel and Fullerene N-channel thin-film transistors. These organic semiconductor materials are chosen due to their popularity and high effect-field mobility. We fabricated two new organic fieldeffect transistor types, then we measured key parameters in order to create models being used in integrated c...
متن کاملAir-Stable n-channel Diketopyrrolopyrrole-Diketopyrrolopyrrole Oligomers for High Performance Ambipolar Organic Transistors.
n-channel organic semiconductors are prone to oxidation upon exposed to ambient conditions. Herein, we report design and synthesis of diketopyrrolopyrrole (DPP)-based oligomers for ambipolar organic thin-film transistors (OFETs) with excellent air and bias stability at ambient conditions. The cyclic voltammetry measurements reveal exceptional electrochemical stability during the redox cycle of ...
متن کاملUltra-low voltage, organic thin film transistors fabricated on plastic substrates by a highly reproducible process
Related Articles Second-harmonic generation reveals the oxidation steps in semiconductor processing J. Appl. Phys. 111, 064504 (2012) Very low bias stress in n-type organic single-crystal transistors APL: Org. Electron. Photonics 5, 79 (2012) Very low bias stress in n-type organic single-crystal transistors Appl. Phys. Lett. 100, 133301 (2012) InGaN channel high electron mobility transistor str...
متن کاملUse of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors.
We present here the development of a new solution-processable n-type dopant, N-DMBI. Our experimental results demonstrated that a well-known n-channel semiconductor, [6,6]-phenyl C(61) butyric acid methyl ester (PCBM), can be effectively doped with N-DMBI by solution processing; the film conductivity is significantly increased by n-type doping. We utilized this n-type doping for the first time ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006